Справочник характеристик видеокарт.
Информационные технологии для экспертов
Логин: Пароль:
Войти через:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:

ВИДЕОКАРТЫ (3Д,3D - акселлераторы, ускорители) - [684]


 
ID
Название
Год
filter

 

Назн.
filter
[4] Назначение:




Расп.чипа.
filter
[5] Расположение чипа:




Шина
filter
[6] Шина:

PCI-E







AGP






PCI











HyperTransport






Произв.
чипа
filter
[7] Производитель чипа (бренд):






Семейство
filter
[8] Семейство:

1. 3dfx












2. AMD














3. Intel


4. Nvidia

























































Архитектура
filter
[9] Архитектура:


AMD













Intel















Nvidia

















Другие

Назв.чипа
filter
[9] Кодовое имя чипа:

1. 3dfx










2. AMD











































3. Intel








































4. Nvidia

















































































































































кол-во транз., млн.
filter

 


Если передвинуть ползунок влево до 1000, то масштаб уменьшится с 0 до 1000. Затем, если передвинуть ползунок влево до 100, то масштаб поменяется от 0 до 100.

n(CH)
filter

 

Тех.проц., нм
filter
[12] Технологический процесс производства, нм:




























Част.(3D), МГц
filter

 

Пямять
filter
[14] Тип фидеопамяти:
















v(RAM), MB
filter

 


Если передвинуть ползунок влево до 1000, то масштаб уменьшится с 0 до 1000. Затем, если передвинуть ползунок влево до 100, то масштаб поменяется от 0 до 100.

B.Width
filter
[16] Ширина полосы пропускания видеопамяти, бит:
















BW (GB/s)
filter

 


Если передвинуть ползунок влево до 100, то масштаб уменьшится с 0 до 100.

n (USHD)
filter

 


Если передвинуть ползунок влево до 500, то масштаб уменьшится с 0 до 500.

n (TMU)
filter

 

n (ROU, ROP)
filter

 

Mvert./s
filter

 


Если передвинуть ползунок влево до 100 000, то масштаб уменьшится с 0 до 100 000. Затем, если передвинуть ползунок влево до 1000, то масштаб поменяется от 0 до 1000.

Pix. Fillr., MPix/s
filter

 


Если передвинуть ползунок влево до 10 000, то масштаб уменьшится с 0 до 10 000.

Tex. Fillr., MTex/s
filter

 


Если передвинуть ползунок влево до 10 000, то масштаб уменьшится с 0 до 10 000.

FP16, GFlops
filter

 


Если передвинуть ползунок влево до 1000, то масштаб уменьшится с 0 до 1000.

FP32, GFlops
filter

 


Если передвинуть ползунок влево до 1000, то масштаб уменьшится с 0 до 1000.

FP64, GFlops
filter

 


Если передвинуть ползунок влево до 1000, то масштаб уменьшится с 0 до 1000.

MPC
filter

 

N.C.
P.C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
 
[сбросить фильтрыпомощь

Внимание, фильтрация элементов происходит сразу по всем фильтрам (3-28), поэтому для начала выбирайте один фильтр, последовательно добавляя, при необходимости, другие.

14457

2015
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM206
2940
<1>
28 нм
1024
GDDR5
2048
-128-
105.7
{768}
48
32
49152
32768
49152
н.д.
1572
49
90
 
14455

2016
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM206
2940
<1>
28 нм
935
GDDR5
2048
-128-
80
{1024}
64
32
59840
29920
59840
н.д.
1914
60
120
 
14453

2015
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM206
2940
<1>
28 нм
1127
GDDR5
4096
-128-
112.1
{1024}
64
32
72128
36064
72128
н.д.
2308
72
120
 
14451

2015
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM204
5200
<1>
28 нм
924
GDDR5
3072
-192-
120
{1280}
80
48
83040
49824
83040
н.д.
2657
83
130
 
14449

Видеокарта Nvidia GeForce GTX 970 [GM204] 4 Гб >>>

Для доступа к своей памяти GTX 970 использует 7 из 8 32-битных линий со скоростью 196 ГБ/с, а оставшаяся одна линия, обеспечивающая доступ к 0,5 Гб памяти, пропускает данные со скоростью 28 Гб/с в одиночном режиме, что составляет одну седьмую скорости остальной части памяти.

есть фото  15  
2014
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM204
5200
<1>
28 нм
1050
GDDR5
4096
-256-
224.3
{1664}
104
56
109200
58800
109200
н.д.
3494
109
145
 
14447

2015
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM200
8000
<1>
28 нм
1000
GDDR5
12288
-384-
336
{3072}
192
96
192000
96000
192000
н.д.
6144
192
250
 
14445

2015
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 900
Maxwell >>>
GM200
8000
<1>
28 нм
1000
GDDR5
6144
-384-
336
{2816}
176
96
176000
96000
176000
н.д.
5632
176
250
 
14443

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK104
3540
<1>
28 нм
771
GDDR5
4096
-256-
160
{1536}
128
32
74016
24672
98688
н.д.
2368
98
122
 
14441

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK106
2540
<1>
28 нм
706
GDDR5
3072
-192-
96
{960}
80
24
42360
16944
56480
н.д.
1355
56
75
 
14439

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK106
2540
<1>
28 нм
797
GDDR5
2048
-128-
64
{768}
64
16
38256
12752
51008
н.д.
1224
51
65
 
14437

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK106
2540
<1>
28 нм
628
GDDR5
2048
-128-
64
{768}
64
16
30144
10048
40192
н.д.
964
40
55
 
14435

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK107
1270
<1>
28 нм
980
GDDR5
2048
-128-
86.4
{384}
32
16
23520
15680
31360
н.д.
752
31.3
50
 
14433

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK107
1270
<1>
28 нм
967
GDDR5
2048
-128-
80
{384}
32
16
23208
15472
30944
н.д.
742
31
50
 
14431

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK107
1270
<1>
28 нм
837
GDDR5
2048
-128-
80
{384}
32
16
20088
13392
26784
н.д.
642
26.7
45
 
14429

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK107
1270
<1>
28 нм
810
GDDR3
2048
-128-
28.8
{384}
32
16
19440
12960
25920
н.д.
622
26
45
 
14427

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK208
1020
<1>
28 нм
980
GDDR3
2048
-64-
14.4
{384}
32
8
23520
7840
31360
н.д.
752
31.3
33
 
14425

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK208
1020
<1>
28 нм
889
GDDR3
2048
-64-
16
{384}
32
8
21336
7112
28448
н.д.
682
28.4
33
 
14423

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK208
1020
<1>
28 нм
719
GDDR3
2048
-64-
16
{384}
32
8
17256
5752
23008
н.д.
552
23
33
 
14421

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK208
1020
<1>
28 нм
719
GDDR3
2048
-64-
12.8
{192}
16
8
8628
5752
11504
н.д.
276
11.5
22
 
14419

2013
потреб.
собств. плата
Шина PCI Express (PCIe) 3.0 (8 GT/s) >>>
Nvidia >>>
Geforce 700
Kepler >>>
GK208
1020
<1>
28 нм
719
GDDR3
1024
-64-
14.4
{192}
16
8
8628
5752
11504
н.д.
276
11.5
15
 
Название семейства
Производитель (бренд)
Год появления
Среднее потребление электроэнергии, Вт
Среднее количество транзисторов в чипе
Средняя частота чипа в 3D-режиме
Средний объем видеопамяти
Среднее количество универсальных шейдеров
Количество нюансов
Количество проблем
AAlchemy [ 2 ]

Семейство профессиональных ускорителей 3dfx на чипах Avenger (Voodoo 3) и VSA-100 (Voodoo 4,5)

3dfx
1999
82
11.1
166
264
0
0
0
3
Obsidian [ 2 ]

Семейство профессиональных ускорителей 3dfx на чипах SST1 (Voodoo)

3dfx
1996
0
1
50
4
0
0
0
0
Obsidian2 [ 4 ]

Семейство профессиональных ускорителей 3dfx на чипах SSTV2 (Voodoo 2)

3dfx
1998
39
4
90
24
0
0
0
0
Specter [ 3 ]

Новое поколение видеокарт, запланированное к выходу в 2001 году, но так и не вышедшее из-за банкротства компании. Предполагалось перевести чипы на 180 нм техпроцесс и использовать память типа DDR.

3dfx
2001
0
0
200
85.33
0
0
0
0
Velocity [ 2 ]

3Д-ускорители 3dfx, не отличающиеся архитектурно от Voodoo 2, но имеющие более высокую тактовую частоту и наличие 2D-ядра. Т.е., являются полноценными видеокартами. Чипы изготовлены по более тонкому техпроцессу - 250 нм.

3dfx
1999
10
8.2
143
12
0
0
0
0
Voodoo [ 2 ]

Первые ускорители трехмерной компьютерной графики, которые произвели революцию в мире компьютерной графики и в играх. Для работы 3Д-ускорителя 3dfx Voodoo была необходима видеокарта, т.к. сам ускоритель не мог выводить изображение на монитор и подсоединялся к видеокарте через кабель.

3dfx
1996
0
1
50
5
0
0
0
0
Voodoo 2 [ 2 ]

Ускорители 3dfx второго поколения, которые отличаются от первого тем, что был добавлен второй текстурный модуль и увеличены тактовые частоты чипа и памяти - с 50 до 90 МГц.

3dfx
1998
12
4
95
14
0
0
0
0
Voodoo 3 [ 6 ]

3Д-ускорители 3dfx, не отличающиеся архитектурно от Voodoo 2, но имеющие более высокую тактовую частоту и наличие 2D-ядра. Т.е., являются полноценными видеокартами. Чипы изготовлены по более тонкому техпроцессу - 250 нм.

3dfx
1999
11
8.2
160
14.67
0
0
0
0
Voodoo 4 [ 4 ]

Видеокарты 3dfx, в архитектуре которых впервые произошли изменения со времен Voodoo Graphics. Был добавлен ещё один конвейер рендеринга. Включена поддержка 32-битного цвета в 3Д режиме. Впервые добавлена возможность аппаратного сглаживания изображения (2xFSAA). 24 битный Z-Buffer. 8 битный буфер шаблонов. Поддержка текстур размером до 2048x2048 и поддержка компрессии текстур DXTC (только в DirectX) и FXT1.

3dfx
2000
15
14
166
36
0
0
0
0
Voodoo 5 [ 4 ]

Многочиповые видеокарты 3dfx, основанные на чипах VSA-100

3dfx
2000
37.5
14
166
72
0
0
0
0
5xx [ 2 ]

Видеокарты архитектуры GCN первого поколения. 28 нм техпроцесс изготовления чипов. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 1.2, Shader Model 5.0

AMD
2017
50
1040
1024
1536
320
0
0
0
R5 3xx [ 2 ]

Видеокарты, основанные на чипах Oland Pro и Oland XT. 1,04 млрд.транзисторов. 28 нм техпроцесс изготовления чипов. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 1.2, Shader Model 5.0

AMD
2015
52.5
1040
780
2048
352
0
0
0
R5 4xx [ 2 ]

Видеокарты на архитектуре GCN 1, на чипах Oland и Oland Pro. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2.0, Shader Model 5.0

AMD
2016
50
1040
880
2048
352
0
0
0
R7 3xx[E,X] [ 5 ]

Видеокарты, основанные на чипах Oland XT, Cape Verde XTL, Bonaire Pro. До 2,08 млрд.транзисторов. 28 нм техпроцесс изготовления чипов. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 1.2, Shader Model 5.0

AMD
2015
87
1692
926
2048
614.4
0
0
0
R7 4xx [ 4 ]

Видеокарты, на архитектуре GCN 1 и GCN 2, на чипах Oland, Oland Pro, Cape Verde Pro, Bonaire Pro. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2.0, Shader Model 5.0

AMD
2016
66.25
1415
937.5
2048
496
0
0
0
R9 3xx[X] [ 8 ]

Видеокарты, основанные на чипах Pitcairn Pro, Curaçao Pro, Bonaire Pro, Tonga Pro, Tonga XT, Hawaii Pro, Hawaii XT. До 6,2 млрд.транзисторов. 28 нм техпроцесс изготовления чипов. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2, Shader Model 5.0

AMD
2015
237.5
4625
992.5
5632
1856
0
0
0
R9 Fury [ 2 ]

Видеокарты, основанные на чипах Fiji. Впервые была применена оперативная память (HBM), расположенная на одной подложке с графическим процессором, что позволило в целом упростить конструкцию печатной платы и существенно расширить ширину полосы пропускания памяти до 4096 бит. При столь большой ширине полосы пропускания не необходимости делать высокой частоту работы памяти. Графический чип содержит 8,9 млрд.транзисторов и изготовлен с соблюдением 28 нм норм. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2, Shader Model 5.0

AMD
2015
275
8900
1025
4096
3840
0
0
0
R9 Nano [ 1 ]

Видеокарты, основанные на чипах Fiji. Впервые была применена оперативная память (HBM), расположенная на одной подложке с графическим процессором, что позволило в целом упростить конструкцию печатной платы и существенно расширить ширину полосы пропускания памяти до 4096 бит. При столь большой ширине полосы пропускания не необходимости делать высокой частоту работы памяти. Графический чип содержит 8,9 млрд.транзисторов и изготовлен с соблюдением 28 нм норм. В видеокартах на R9 Nano значительно уменьшено их потребление электроэнергии - до 175 Вт, против 275 у R9 Fury. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 1.2, Shader Model 5.0

AMD
2015
175
8900
1000
4096
4096
0
0
0
RX 4xx[D] [ 4 ]

Видеокарты на архитектуре GCN 4, на чипах Baffin, Ellesmere, Ellesmere Pro, Ellesmere XT. Применен 14-нанометровый техпроцесс изготовления чипов, с использованием транзисторов с вертикально расположенным затвором (FinFET — Fin Field Effect Transistor). Внедрен стандарт DisplayPort 1.3 HBR3 с увеличенной пропускной способности (до 32,4 Гбит/с) (на 80% больше, чем у HDMI 2.0b), что позволяет подключать 5K-мониторы в RGB-формате при 60 Гц, используя единственный кабель, а также UHDTV-телевизоры с разрешением 8K (7680×4320). Поддержка видео в формате HEVC (H.265). Технология LiquidVR для улучшения качества изображения в системах виртуальной реальности.Технология TrueAudio Next для работы со звуками на GPU в реальном времени, с соблюдением физических законов распространения звуковых волн и применением просчета лучей (рейтрейсинг) для множества источников звука. Также обеспечена поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2.0, Shader Model 5.0

AMD
2016
116.25
5025
1015.5
4608
1760
0
0
0
RX 5xx[D] [ 6 ]

Видеокарты на архитектуре GCN 4, на чипах Polaris и Lexa. Применен 14-нанометровый техпроцесс изготовления чипов, с использованием транзисторов с вертикально расположенным затвором (FinFET — Fin Field Effect Transistor). Внедрен стандарт DisplayPort 1.3 HBR3 с увеличенной пропускной способности (до 32,4 Гбит/с) (на 80% больше, чем у HDMI 2.0b), что позволяет подключать 5K-мониторы в RGB-формате при 60 Гц, используя единственный кабель, а также UHDTV-телевизоры с разрешением 8K (7680×4320). Поддержка видео в формате HEVC (H.265). Технология LiquidVR для улучшения качества изображения в системах виртуальной реальности.Технология TrueAudio Next для работы со звуками на GPU в реальном времени, с соблюдением физических законов распространения звуковых волн и применением просчета лучей (рейтрейсинг) для множества источников звука. Также обеспечена поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2.0, Shader Model 5.0

AMD
2017
100.83
3633.33
1168.17
3754.67
1216
0
0
0
RX Vega [ 3 ]

Видеокарты на архитектуре GCN 5, на чипах Vega 10. 12,5 миллиардов транзисторов. 14-нанометровый техпроцесс изготовления чипов. Существенна повышена тактовая частота чипов - до 1.7 ГГц. До 4096 потоковых процессоров.  Используется память HBM 2 с пропускной способностью 512 ГБ/с. Поддержка DirectX 12.0, OpenGL 4.6, OpenCL 2.0, Shader Model 5.0

AMD
2017
283.33
12500
1269.67
8192
3925.33
0
0
0
RX Vega M [ 2 ]

Семейство видеочипов на архитектуре GCN 4 на чипах Polaris 22 с памятью HBM 2. Данные чипы находятся на одной подложке с центральными процессорами Intel Intel Core i7-87XXG. 14-нанометровый техпроцесс изготовления чипов.

AMD
2018
82.5
0
997
4096
1408
0
0
0
GeForce 1(256) [ 2 ]

Поколение видеокарт, основанных на чипах NV10. NV10 - первый чип, имеющий в своём составе геометрический сопроцессор.

Nvidia
1999
0
23
120
32
0
0
0
0
Geforce 100 [ 5 ]

Поколение видеокарт архитектуры Tesla, основанных на чипах G9X. До 128 потоковых процессоров. До 1,4 млрд.транзисторов. Техпроцессы 65 и 55 нм. Ширина шины памяти - 256 бит. Названия видеокарт (Geforce 100) - результат их ребрендинга с целю перехода на новый формат обозначения моделей карт.

Nvidia
2009
81.2
457.6
591
665.6
56
0
0
0
Geforce 100M [ 8 ]

Поколение мобильных видеокарт архитектуры Tesla, основанных на чипах G9XM. Названия видеокарт (Geforce 100) - результат их ребрендинга с целю перехода на новый формат обозначения моделей карт.

Nvidia
2009
25.88
335.75
528.75
767.88
30
0
0
0
Geforce 2 [ 10 ]

Поколение видеокарт, основанных на чипах NV15. Переход на новый, по сравнению с 220 нанометровым в GeForce 256, 180 нм техпроцесс. Повышенные частоты, полная поддержка DirectX 7

Nvidia
2000
7
22
202.5
46.4
0
0
0
5
Geforce 2 Go [ 3 ]

Поколение видеокарт для мобильных компьютеров, основанных на чипах NV11M.

Nvidia
2000
0
0
137
13.33
0
0
0
0
Geforce 200 [ 14 ]

Следующее поколение видеокарт архитектуры Tesla, основанных на чипе GT200. 240 потоковых процессоров. 1,4 млрд.транзисторов. Применены техпроцессы 65, 55 и 40 нм. Ширина шины памяти - 512 бит. Поддержка DirectX: 10.0, OpenGL: 3.3, OpenCL: 1.1, CUDA: 1.3.

Nvidia
2008
136.71
919.5
614.86
941.71
140.57
0
0
0
Geforce 200M [ 9 ]

Следующее поколение видеокарт архитектуры Tesla. В данном семействе используются как новые чипы GT200, так и предыдущего поколения - G9X. До 128 потоковых процессоров. 754 млн.транзисторов. Техпроцессы 65, 55 и 40 нм. Ширина шины памяти - до 256 бит. Поддержка DirectX: 10.0, OpenGL: 3.3, OpenCL: 1.1, CUDA: 1.3.

Nvidia
2009
39.44
584.67
551.11
967.11
78.22
0
0
3.3
Geforce 3 [ 3 ]

Поколение видеокарт, основанных на чипах NV20. 150 нм техпроцесс. 57 млн. транзисторов. Новый контролёр памяти - Lightspeed Memory Architecture (LMA). Поддержка DirectX 8.0, пиксельные и вершинные шейдеры версии 1.1.

Nvidia
2001
0
57
205
64
0
0
0
0
Geforce 300 [ 5 ]

OEM-видеокарты (для собираемых компьютеров), основанные на чипах GT2ХХ (архитектура Tesla).

Nvidia
2009
51.3
585.4
540.8
716.8
65.6
0
0
0
Geforce 300M [ 10 ]

Мобильные OEM-видеокарты на чипах архитектуры Tesla.

Nvidia
2010
21.6
490.5
523.1
767.9
48
0
0
0
Geforce 4 [ 16 ]

Поколение видеокарт, основанных на чипах NV25. 150 нм техпроцесс. 63 млн. транзисторов. LightSpeed Memory Architecture II. Переход на шину AGP 3.0 8x. Существенно возросшие тактовые частоты по сравнению с видеокартами семейства GeForce 3. Поддержка DirectX 8.1. Видеокарты подсемейства GeForce 4 MX лишены пиксельных шейдеров.

Nvidia
2002
30.13
41.75
268.13
79.94
0
0
0
0
Geforce 4 Go [ 6 ]

Мобильные видеокарты на чипах NV17M, NV18M и NV28M.

Nvidia
2002
0
34.67
228.33
50.67
0
0
0
0
Geforce 400 [ 13 ]

Видеокарты Nvidia построенные на чипах GF1XX архитектуры Fermi. До 480 потоковых процессоров, 512 - в полной версии чипа. До 3 млрд.транзисторов. Техпроцесс изготовления - 40 нм. 384-битная шина памяти, шесть независимых контроллеров шириной по 64 бита каждый, с поддержкой GDDR5 памяти. Поддержка DirectX 11 API, Shader Model 5.0, геометрических (geometry), вычислительных (compute) шейдеров, а также тесселяции. Поддерживается технология вычислений на видеокарте DirectCompute. Поддержка вычислений в целочисленном формате и с плавающей запятой с точностями FP32 и FP64. Геометрический конвейер в новом GPU впервые за многое время подвергся весьма значительной переработке. Значительно увеличена пиковая производительность обработки геометрии, геометрических шейдеров. Новый логический блок обработки геометрии - PolyMorph Engine, содержащий собственный модуль по выборке вершин (vertex fetch unit) и тесселятор. Новые форматы сжатия текстур BC6H и BC7, поддерживаемые в DirectX 11. OpenGL: 4.6, OpenCL: 1.2, CUDA: 2.

Nvidia
2010
117.08
1537.77
666.77
1043.69
221.54
0
0
0
Geforce 400M [ 11 ]

Мобильные видеокарты Nvidia построенные на чипах GF1XX архитектуры Fermi. До 384 потоковых процессоров. До 2 млрд.транзисторов. Техпроцесс изготовления - 40 нм. 256-битная шина памяти с поддержкой GDDR5 памяти. Поддержка DirectX 11 API, Shader Model 5.0, геометрических (geometry), вычислительных (compute) шейдеров, а также тесселяции. Поддерживается технология вычислений на видеокарте DirectCompute. Поддержка вычислений в целочисленном формате и с плавающей запятой с точностями FP32 и FP64. Геометрический конвейер в новом GPU впервые за многое время подвергся весьма значительной переработке. Значительно увеличена пиковая производительность обработки геометрии, геометрических шейдеров. Новый логический блок обработки геометрии - PolyMorph Engine, содержащий собственный модуль по выборке вершин (vertex fetch unit) и тесселятор. Новые форматы сжатия текстур BC6H и BC7, поддерживаемые в DirectX 11. OpenGL: 4.6, OpenCL: 1.2, CUDA: 2.

Nvidia
2010
43.18
1090.18
562.73
1303.27
171.64
0
0
0
Geforce 5 FX [ 23 ]

Поколение видеокарт, основанных на чипах NV30, NV31, NV35, NV36, NV38. 130 нм техпроцесс. 125 млн. транзисторов. Частота чипа достигла 500 Мгц (300 - у GeForce 4 Ti 4600). Впервые применена память DDR2. Архитектура Nvidia CineFX, знаменующая собой появление кинематографических эффектов в реальном времени. Поддержка DirectX 9a. Пиксельные и вертексные шейдеры версий 2.0. Впервые видеокартам потребовалось дополнительное питание, а максимальное энергопотребление достигло 60 Вт. Применена система охлаждения турбинного типа с выбросом горячего воздуха за пределы системного блока, в связи с чем видеокарта стала занимать 2 слота.

Nvidia
2003
40.78
95.09
371.96
144.7
0
0
0
0
Geforce 5 FX Go [ 5 ]

Поколение мобильных видеокарт, основанных на чипах NV31M, NV34M, NV36M

Nvidia
2003
0
80.4
315
32
0
0
0
0
Geforce 500 [ 14 ]

Видеокарты Nvidia построенные на чипах GF11X усовершенствованной архитектуры Fermi. До 512 потоковых процессоров. До 3 млрд.транзисторов. Техпроцесс изготовления - 40 нм. 384-битная шина памяти с поддержкой GDDR5 памяти. Поддержка DirectX 11 API, Shader Model 5.0, геометрических (geometry), вычислительных (compute) шейдеров, а также тесселяции. Поддерживается технология вычислений на видеокарте DirectCompute. Поддержка вычислений в целочисленном формате и с плавающей запятой с точностями FP32 и FP64.

Nvidia
2010
156.64
1879.21
748.71
1152
294.86
0
0
0
Geforce 500M [ 10 ]

Мобильные видеокарты Nvidia построенные на чипах GF11X усовершенствованной архитектуры Fermi. До 384 потоковых процессоров. До 2 млрд.транзисторов. Техпроцесс изготовления - 40 нм. 256-битная шина памяти с поддержкой GDDR5 памяти. Поддержка DirectX 11 API, Shader Model 5.0, геометрических (geometry), вычислительных (compute) шейдеров, а также тесселяции. Поддерживается технология вычислений на видеокарте DirectCompute. Поддержка вычислений в целочисленном формате и с плавающей запятой с точностями FP32 и FP64. Геометрический конвейер в новом GPU впервые за многое время подвергся весьма значительной переработке. Значительно увеличена пиковая производительность обработки геометрии, геометрических шейдеров. Новый логический блок обработки геометрии - PolyMorph Engine, содержащий собственный модуль по выборке вершин (vertex fetch unit) и тесселятор. Новые форматы сжатия текстур BC6H и BC7, поддерживаемые в DirectX 11. OpenGL: 4.6, OpenCL: 1.2, CUDA: 2.

Nvidia
2011
45
1004.2
647.5
1280
163.2
0
0
0
Geforce 6 [ 35 ]

Видеокарты, основанные на чипах NV40, NV41, NV43, NV44, NV45. 220 млн.транзисторов. Применена видеопамять стандарта GDDR3, новая шина PCI Express. Шейдерная архитектура CineFX 3.0, До 16 пиксельных и 6 вертексных шейдеров версий 3.0. 16x анизотропная фильтрация.

Nvidia
2004
41.97
146.74
372.71
166.29
0
0
0
0
Geforce 6 Go [ 10 ]

Поколение мобильных видеокарт, основанных на чипах NV41M, NV43M, NV44M, C51M

Nvidia
2004
27.6
125.7
350
86.2
0
0
0
0
Geforce 600 [ 22 ]

Поколение видеокарт, построенных на чипах (GK1xx) с архитектурой Kepler. До 1536 усовершенствованных потоковых процессоров (Next Generation Streaming Multiprocessor (SMX)). 3,5 млрд.транзисторов в старшем чипе. Техпроцесс изготовления - 28 нм. По сравнению с предыдущими чипами, в GK1xx потоковые процессоры работают на одинаковой с чипом тактовой частоте. Впервые появилась функция автоматического повышения тактовой частоты чипа - GPU Boost. Обновлен PolyMorph Engine до версии 2.0. Новые методы сглаживания изображения - TXAA 1 и TXAA 2. Поддержка DirectX: 11.0, OpenGL: 3.3, OpenCL: 1.1, CUDA: 3.5. Впервые добавлена функция (карты GTX-версий) аппаратного кодирования видео - Nvidia NVENC, позволяющая кодировать одновременно до двух видеопотоков (в профессиональных вариантах (Quadro) - до 21-го потока).

Nvidia
2012
95.64
1873.91
874.18
1396.36
584.73
0
0
0
Geforce 600M [ 16 ]

Поколение мобильных видеокарт, построенных на чипах (GK1xx) с архитектурой Kepler. До 1536 усовершенствованных потоковых процессоров (Next Generation Streaming Multiprocessor (SMX)). Техпроцессы изготовления - 28 и 40 нм. По сравнению с предыдущими чипами, в GK1xx потоковые процессоры работают на одинаковой с чипом тактовой частоте. Впервые появилась функция автоматического повышения тактовой частоты чипа - GPU Boost. Обновлен PolyMorph Engine до версии 2.0. Новые методы сглаживания изображения - TXAA 1 и TXAA 2. Поддержка DirectX: 11.0, OpenGL: 3.3, OpenCL: 1.1, CUDA: 3.5. Впервые добавлена функция (карты GTX-версий) аппаратного кодирования видео - Nvidia NVENC, позволяющая кодировать одновременно до двух видеопотоков (в профессиональных вариантах (Quadro) - до 21-го потока).

Nvidia
2012
53.81
1745
696.38
2336
495
0
0
0
Geforce 7 [ 34 ]

Видеокарты, основанные на чипах G70, G71, G72, G73. 302 млн.транзисторов. Являются последователями видеокарт семейства GeForce, не неся в себе инновационных архитектурных изменений, но обладающих большей производительностью за счёт увеличения пиксельных и вертексных шейдеров, тактовых частот ядра и видеопамяти. Применены техпроцессы 110, 90, 80 нм.

Nvidia
2005
44.21
200.35
467.79
278.41
0
0
0
5
Geforce 7 Go [ 15 ]

Мобильные видеокарты

Nvidia
2005
24.67
187.87
434.33
264.4
0
0
0
0
Geforce 700 [ 32 ]

Поколение видеокарт, построенных на чипах (GK11x), основанных на улучшенной архитектуре Kepler. До 2880 усовершенствованных потоковых процессоров (Next Generation Streaming Multiprocessor (SMX)). 7 млрд.транзисторов в старшем чипе. Техпроцесс изготовления - 28 нм.

Nvidia
2013
91.44
2484.28
862.47
2560
868.38
0
0
0
Geforce 8 [ 20 ]

Видеокарты, основанные на чипах G8X, G9X. 681 млн.транзисторов. Применены техпроцессы 90, 80, 65 нм. В чипах G8X, G9X произошли существенные, революционные изменения. Были внедрены унифицированные шейдеры, или же - потоковые процессоры, способные производить операции как над пикселями, так и над вертексами. Появилась поддержка интерфейса Direct3D 10, а с ним и шейдеров версии 4. Благодаря унифицированной шейдерной архитектуре, видеокарты этого семейства стали поддерживать CUDA - разработку Nvidia. CUDA (англ. Compute Unified Device Architecture) — программно-аппаратная архитектура параллельных вычислений, которая позволяет существенно увеличить вычислительную производительность благодаря использованию графических процессоров. Применение CUDA позволяет расширить использование видеокарты за рамки обработки пикселей и вертексов, позволяя проводить различные научные вычисления. Также была включена поддержка PhysX -  кроссплатформенного физического движока для аппаратной симуляции физического взаимодействия объектов. (Первоначально PhysX разрабатывался компанией Ageia для своего физического процессора PhysX и отдельных плат расширения - т.н. физических ускорителей. В последствие Ageia была приобретена nVidia, а её движок перешёл в собственность nVidia).

Nvidia
2006
80.05
423.7
537.65
342.25
54
0
0
0
Geforce 8M [ 10 ]

Мобильные видеокарты, основанные на чипах NB8P(G92), NB8P(G84), NB8M(G86), MCP77MV, MCP79MVL. До 754 млн.транзисторов. Применены техпроцессы 80, 65 нм. В данных чипах произошли существенные, революционные изменения. Были внедрены унифицированные шейдеры, или же - потоковые процессоры, способные производить операции как над пикселями, так и над вертексами. Появилась поддержка интерфейса Direct3D 10, а с ним и шейдеров версии 4. Благодаря унифицированной шейдерной архитектуре, видеокарты этого семейства стали поддерживать CUDA - разработку Nvidia. CUDA (англ. Compute Unified Device Architecture) — программно-аппаратная архитектура параллельных вычислений, которая позволяет существенно увеличить вычислительную производительность благодаря использованию графических процессоров. Применение CUDA позволяет расширить использование видеокарты за рамки обработки пикселей и вертексов, позволяя проводить различные научные вычисления. Также была включена поддержка PhysX -  кроссплатформенного физического движока для аппаратной симуляции физического взаимодействия объектов. (Первоначально PhysX разрабатывался компанией Ageia для своего физического процессора PhysX и отдельных плат расширения - т.н. физических ускорителей. В последствие Ageia была приобретена nVidia, а её движок перешёл в собственность nVidia).

Nvidia
2007
24.3
334.6
460
358.2
30.4
0
0
1
Geforce 9 [ 18 ]

Видеокарты, основанные на чипах G92, G94, G96, G98. 754 млн.транзисторов. Применены техпроцессы 65 и 55 нм. Данные чипы являются продолжением чипов G8X, но имеют более высокие частоты работы чипа и потоковых процессоров в частности.

Nvidia
2008
73.39
480
573.33
433.67
59.56
0
0
5
Geforce 900 [ 8 ]

Поколение видеокарт архитектуры Maxwell, основанных на чипе GM20x. До 3072 существенно оптимизированных потоковых процессоров. До 8 млрд.транзисторов. Техпроцесс изготовления чипов 28 нм.


В видеокартах этой архитектуры потоковые процессоры работают на одной с чипом тактовой частоте, при этом была добавлена функция автоматического повышения тактовой частоты - GPU Boost.Обновлен PolyMorph Engine до версии 2.0. Новые методы сглаживания изображения - TXAA 1 и TXAA 2. Поддержка DirectX: 11.0, OpenGL: 3.3, OpenCL: 1.1, CUDA: 3.5.

Nvidia
2014
158.75
5052.5
1023.25
4736
1712
0
0
0
Quadro [ 1 ]

Видеокарты, основанные на чипе NV10, предназначенные для профессионального применения в программах компьютерного моделирования и визуализации. (NV10 - первый чип, имеющий в своём составе геометрический сопроцессор.)

Nvidia
1999
0
23
135
64
0
0
0
0
Quadro 2 [ 3 ]

Видеокарты, основанные на чипах NV11, NV15 (GeForce 2), предназначенные для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2000
2.67
22.33
208.33
53.33
0
0
0
0
Quadro 2 Go [ 1 ]

Мобильные видеокарты на чипе NV11GLM, предназначенные для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2001
0
0
143
64
0
0
0
0
Quadro 200 [ 8 ]

Семейство профессиональных графических адаптеров на чипах GT2xx архитектуры Tesla

Nvidia
2008
76.5
802.38
559.75
1280
103
0
0
0
Quadro 200M [ ]

Семейство мобильных профессиональных графических адаптеров на чипах GT2xxM архитектуры Tesla

Nvidia
2009
0
0
0
0
0
0
0
0
Quadro 3 [ 1 ]

Видеокарты, основанные на чипе NV20 (GeForce 3), предназначенные для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2001
0
57
200
128
0
0
0
0
Quadro 4 [ 8 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации, основанные на чипах NV17GL, NV18GL, NV25GL и NV28GL (GeForce 4).

Nvidia
2002
31.63
46
280.63
96
0
0
0
0
Quadro 4 Go [ 2 ]

Мобильные видеокарты на чипах NV17GLM и NV28GLM, предназначенные для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2002
0
46
198
64
0
0
0
0
Quadro 400 [ 5 ]

Семейство профессиональных графических адаптеров на чипах GF1xx архитектуры Fermi.

Nvidia
2010
120
2211
565.4
2560
268.8
0
0
0
Quadro 400M [ 6 ]

Семейство мобильных профессиональных графических адаптеров на чипах GF1xx архитектуры Fermi.

Nvidia
2010
68.33
1556.67
546.67
1877.33
213.33
0
0
0
Quadro 5 FX [ 10 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации, основанные на чипах NV30GL, NV34GL, NV35GL и NV36GL (GeForce 5).

Nvidia
2003
6.8
110.7
333.5
147.2
0
0
0
0
Quadro 5 FX Go [ 2 ]

Мобильные видеокарты для профессионального применения в программах компьютерного моделирования и визуализации, основанные на чипах NV31GLM и NV36GLM (GeForce 5).

Nvidia
2003
0
0
295
128
0
0
0
0
Quadro 500 [ 2 ]

Семейство профессиональных графических адаптеров на чипах GF11x архитектуры Fermi.

Nvidia
2011
402
3000
612.5
9216
512
0
0
0
Quadro 6 [ 9 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации, основанные на чипах NV40GL, NV43GL, NV45GL и NV41 (GeForce 6).

Nvidia
2004
80.11
205.11
370.56
213.33
0
0
0
0
Quadro 6 Go [ 2 ]

Мобильные видеокарты для профессионального применения в программах компьютерного моделирования и визуализации, основанные на чипах NV41GLM, NV43GLM (GeForce 6).

Nvidia
2004
22.5
184
287.5
192
0
0
0
0
Quadro 7 [ 9 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2005
85.11
256.33
481.67
540.44
0
0
0
0
Quadro 7 M [ 8 ]

Мобильные видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2005
22.63
182.38
456.25
448
0
0
0
0
Quadro 8 [ 7 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2007
67.86
404.57
500
511.86
44.57
0
0
0
Quadro 8 M [ 3 ]

Мобильные видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2007
37.33
262.67
500
426.67
26.67
0
0
0
Quadro 9 [ 5 ]

Видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2008
90.6
578
490
563.2
80
0
0
0
Quadro 9 M [ 8 ]

Мобильные видеокарты для профессионального применения в программах компьютерного моделирования и визуализации.

Nvidia
2008
61.25
549.25
553.75
672
71
0
0
0
Quadro K [ 13 ]

Семейство включает в себя профессиональные графические адаптеры для настольных компьютеров на чипах GK10x и GK11x архитектуры Kepler, а также некоторые адаптеры на архитектуре Maxwell.

Nvidia
2011
81.69
2749.23
855.15
3741.54
900.92
0
0
0
Quadro K M [ 13 ]

Семейство включает в себя профессиональные графические адаптеры для мобильных компьютеров на чипах GK10x и GK11x архитектуры Kepler, а также некоторые адаптеры на архитектуре Maxwell.

Nvidia
2012
65
2376.92
745.38
2914.46
649.85
0
0
0
Riva 128 [ 2 ]

RIVA (Real-time Interactive Video and Animation accelerator). Это первое семейство видеокарт, основанных на чипах NV3 и получивших наиболее широкое распространение и популярность. Видеокарты этой серии обладали максимальной совместимостью с Direct3D 5 и OpenGL API.

Nvidia
1997
3.7
3
100
4
0
0
0
0
Riva TNT2 [ 7 ]

Поколение видеокарт, основанных на чипах NV5. Чипы характеризуются уменьшением техпроцесса с 0,35 мкм до 0,25 мкм, увеличением частоты процессора с 90 МГц до 150 Мгц(+/-), появлением 32-битного 3D-режима и поддержкой текстур разрешением больше чем 2048×2048.

Nvidia
1999
0
15
123.71
26.29
0
0
0
0
Vanta [ ]

Nvidia
0
0
0
0
0
0
0
0
Производитель (бренд)
Количество семейств за все время
Количество моделей видеокарт за все время
Количество нюансов
Количество проблем
3dfx
10
31
0
0
3
AMD
12
41
0
0
0
Intel
0
0
0
0
0
Nvidia
55
522
0
0
3.9
IT4XP / статьи

 


1. Развитие архитектур видеокарт.
2. Изменение ключевых характеристик видеокарт во времени. Максимальные, минимальные и средние значения.
При копировании материала на своем сайте, необходимо использовать активную ссылку на данный источник:
http://www.pc4xp.ru/cpn/dv/index.php

2022

2022 , сентябрь    Появление игровых графических карт Nvidia на архитектуре Ada Lovelace [AD10x] >>>

ID материала: 13628 / Просмотров: 590 / вычислительная техника / видеокарта

Чип построен на архитектуре, названной в честь английского математика Ады Лавлейс. Ада создала первую в мире программу для вычислительной машины Чарльза Бэббиджа. Ввела в употребление термины «цикл» и «рабочая ячейка», считается первым программистом в истории.


2022 , март   Появление профессионального ускорителя вычислений Nvidia на архитектуре Hopper [GH100] >>>

ID материала: 13627 / Просмотров: 536 / вычислительная техника / видеокарта

Чип построен на архитектуре, названной в честь американской ученой-компьютерщика, контр-адмирала ВМС США - Грейс Хоппер (Grace Hopper). Грейс Хоппер была одной из первых программистов компьютера Mark I, являлась пионером компьютерного программирования и изобретателем первого компилятора для языка программирования высокого уровня FLOW-MATIC (pre-COBOL).

Чип предназначен для разнообразных компьютерных вычислений, в т.ч. связанных с машинными обучением.


2020

2020 , сентябрь   Появление игровых графических карт Nvidia на архитектуре Amper [GA10x] >>>

ID материала: 11036 / Просмотров: 1129 / вычислительная техника / видеокарта

Чип построен на архитектуре, названной в честь Андре́-Мари́ Ампе́р (фр. André-Marie Ampère; 20 января 1775 — 10 июня 1836) — французского физика, математика и естествоиспытателя.

Чип предназначен для игровых видеокарт, продолжает собой эволюционное развитие архитектуры Nvidia Turing, представленной в 2018 г.


2020 , май   Появление профессиональной графической карты Nvidia на архитектуре Amper [A100] >>>

ID материала: 11035 / Просмотров: 897 / вычислительная техника / видеокарта

Чип построен на архитектуре, названной в честь Андре́-Мари́ Ампе́р (фр. André-Marie Ampère; 20 января 1775 — 10 июня 1836) — французского физика, математика и естествоиспытателя.

Чип предназначен для компьютерных вычислений, знаменует собой различные качественные и количественные изменения по сравнению с предыдущей архитектурой - Nvidia Volta и является также основой для игровых чипов, вышедших в сентябре 2020 год и ставших основой для видеокарт серии Nvidia RTX 30.


2018

2018 , август   Появление видеокарт Nvidia серии GeForce 20 [TU1XX] >>>

ID материала: 9969 / Просмотров: 1004 / вычислительная техника / видеокарта

Чип построен на новой архитектуре, названной в честь Алана Тьюринга (Alan Mathison Turing), английского математика, логика и криптографа, оказавшего существенное влияние на развитие информатики.

Чип содержит большое количество нововведений и усовершенствований:

- техпроцесс - 12 нм (более улучшенный 16 нм техпроцесс);
- немного возросшая тактовая частота чипа: 1,6 - 1,8 ГГц;
- количество транзисторов возросло до 18,6 млрд.;
- более быстрая GDDR6 видеопамять с пропускной способностью до 672 Гб/сек., объем...

2017

2017 , декабрь   Появление профессиональной графической карты Nvidia на архитектуре Volta [GV100] >>>

ID материала: 9970 / Просмотров: 1269 / вычислительная техника / видеокарта

Чип построен на новой архитектуре, названной в честь Алесса́ндро Во́льта (полное имя Алесса́ндро Джузеппе Анто́нио Анаста́сио Джеро́ламо Умберто Во́льта), итальянского физика, химика и физиолога, одного из основоположников учения об электричестве. Данный чип был разработан для применения исключительно в сфере компьютерных вычислений, содержит в себе различные нововведения и улучшения, в сравнении с предыдущей архитектурой (Pascal), на базе которой производились как игровые решения, так и вычислительные.


2016

2016 , май   Появление видеокарт Nvidia серии GeForce 10 [GP100] >>>

ID материала: 9968 / Просмотров: 827 / вычислительная техника / видеокарта

Чип GP100 представляет собой новую архитектуру, названную в честь Блеза Паскаля, французского математика, механика, физика, литератора и философа.

Впервые, после предыдущих трех поколений (GeForce 600,700,900), применен еще более "тонкий" техпроцесс производства - 16 нм. Это позволило:

- увеличить число транзисторов до 12 млрд. шт;
- увеличить число потоковых процессоров до 3840 шт (TITAN Xp);
- существенно увеличить тактовую частоту с 1 - 1,1 ГГц (GeForce GTX 9XX) до 1,6-1,7 ГГц;

2015

2015 , июль   Появление видеокарт AMD с оперативной памятью HBM >>>

ID материала: 7095 / Просмотров: 1370 / вычислительная техника / видеокарта

Видеокарты, основанные на чипах Fiji. Впервые была применена оперативная память (HBM - Heigh Bandwidth Memory), расположенная на одной подложке с графическим процессором, что позволило в целом упростить конструкцию печатной платы и существенно расширить ширину полосы пропускания памяти до 4096 бит. При столь большой ширине полосы пропускания нет необходимости делать высокой частоту работы памяти. Графический чип содержит 8,9 млрд.транзисторов и изготовлен с соблюдением 28 нм норм. Поддержка DirectX 12.0, Op...

2014

2014 , сентябрь   Появление видеокарт Nvidia серии GeForce 900 [GM200] >>>

ID материала: 9967 / Просмотров: 804 / вычислительная техника / видеокарта

Чип GM200 представляет собой новую архитектуру, названную в честь Джеймса Клерка Ма́ксвелла, британского физика, математика и механика.

Сохранен 28 нм техпроцесс производства. Количество транзисторов достигло 8 млрд. Количество потоковых процессоров несколько увеличилось по сравнению с предыдущим поколением (2880) и составило 3072 в самой старшей модели (GeForce GTX Titan X). При этом, потоковые процессоры были существенно оптимизированы. Результат этой оптимизации привел к тому, что, например, видеокарта ...


2013

2013 , май   Появление видеокарт Nvidia серии GeForce 700 [GK110] >>>

ID материала: 9966 / Просмотров: 946 / вычислительная техника / видеокарта

Чип GK110 являет собой совершенствование архитектуры Кеплер.

При сохранении 28 нм техпроцесса производства в 2 раза увеличено количество транзисторов в чипе - 7 млрд. Количество потоковых процессоров также увеличилось почти в два раза - до 2880 шт. в старшей модели (Geforce GTX 780 Ti). Частота чипа, по сравнению с предыдущим поколением, была несколько снижена - до 876.

Обеспечена поддержка DirectX 11.1, OpenGL 4.5, OpenCL 1.2.


Раздел в разработке
Раздел в разработке

Внимание! Оставляйте здесь только сообщения об ошибках: ошибки в справочнике, неверное или неточное описание характеристик процессоров и т.п.

Также указывайте ID процессора, характеристики которого необходимо откорректировать. При необходимости - ссылки на источники данных.



НАЗНАЧЕНИЕ КОРЗИНЫ

Корзина не предназначена для покупки товаров, поскольку сайт не занимается продажами.

Функция корзины заключается всборе компьютерных комплектующих в собственную базу (требуется регистрация на сайте) и сравнении их между собой.

Сбор компьютерных комплектующих в собственную базу: Эта фанкция необходима для виртуальной сборки компьютера. Требуется регистрация на сайте.

Сравнение комплектующих: Можно сравнить только комплектующие следующих групп: 1. Жёсткие диски. 2. Твердотельные диски. 3. Оперативная память. 4. Видеокарты. 5. Центральные процессоры. 6. Материнские платы.